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We calculate the free energy of a model for a polymer melt in a computer simulation of the bond-fluctuation
model and determine the entropy of the melt over a wide range of temperatures, including the region close to
the glass transition. The results are compared with the Gibbs-DiMarzio theory, a theory by Flory for semiflex-
ible polymers, and a modification of their theories due to Milchev. We can describe the data within the
framework of the Flory theory with Milchev’s correction and discuss the consequences for the understanding
of the glass transition.@S1063-651X~96!04407-8#
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I. INTRODUCTION

A challenging problem in condensed matter physics is to
develop a detailed understanding for the structural glass tran-
sition @1–3#. The existing theoretical approaches can roughly
be divided into two classes: Some theories regard the calo-
rimetric glass transition as a consequence of a dynamic
anomaly which already occurs in the supercooled state of the
liquid at temperatures above the glass transition temperature
Tg ~e.g., mode-coupling theory@4–6#!, while other theories
try to relate it to a thermodynamic phase transition, the clear
signature of which is blurred by the finite experimental ob-
servation time. Examples for these latter theories are the
free-volume theory@7# for liquids of all kind, including poly-
meric systems, and the Gibbs-DiMarzio theory which is es-
pecially designed for polymer melts@8–14#.

If we write the canonical partition function as

Z5(
E

VGDM~E,N,V!e2bE,

the Gibbs-DiMarzio theory is concerned with calculating the
microcanonical partition functionVGDM(E,N,V). In this
calculation it turns out that one findsVGDM(E,N,V),1
for certain combinations ofN, V, and E. In the thermo-
dynamic limit we can replace VGDM(E,N,V) by
VGDM(^E/N&,^V/N&) and view ^E/N& and ^V/N& as func-
tions of temperature. If now upon cooling one reaches values
of ^E/N& and ^V/N& for which VGDM,1, an entropy catas-
trophe occurs, which is the theoretical counterpart of the ex-
perimental ‘‘Kauzmann paradoxon’’@15,16#. It is an appeal-
ing feature of this theory that it thus connects the occurence
of a glass transition atTg with a vanishing entropy of the
supercooled melt at a finite temperatureT2,Tg .

Based on the formula forVGDM several predictions for the
glassy behavior of polymeric systems can be derived. Some
of these predictions have been subject to experimental scru-
tiny, e.g.,Tg as a function of pressure@17# or of molecular
weight @9,18–21# and the discontinuity of specific heat atTg
@22,23#. In addition to that, the predictions about the influ-
ence of cross-links@24–26# and plasticizer@27# have been

investigated, and the theory has also been applied to copoly-
mers and polymer mixtures, whereTg depends on the com-
position@28#. In all these cases the experimental data can be
described in the framework of the Gibbs-DiMarzio theory
rather well.

With the present work we want to present a further test of
the theory, in which not a derived, but the basic theoretical
quantity, i.e., the density of states or equivalently the con-
figurational entropy of the melt, is in the center of interest. If
the entropy of a polymer melt is known over the range of
temperatures from the liquid to the supercooled state, the
approximation of the Gibbs-DiMarzio theory and of other
related theories can be tested and critically compared. There-
fore we determined the entropy of a glassy polymer melt by
Monte Carlo simulation. Since the method was discussed in
detail in Ref.@29#, we focus in this paper on a comparison
between theory and simulation.

The paper is organized as follows: In Sec. II we repeat
some aspects of the model and discuss the necessary input
parameters. Section III presents several theoretical approxi-
mations for the entropy and compares them with the simula-
tion data. Section IV discusses the results and the conse-
quences for the understanding of the glass transition.

II. MODEL AND SIMULATION

The model of our simulation is the bond-fluctuation
model ~BFM! in three dimensions@30,31#. This is a lattice
model for polymers which mimics the properties of a con-
tinuum model, e.g., a widespread distribution of bond angles
between the monomers. Each monomer occupies eight sites
of a simple cubic lattice, forming a cube~see Fig. 1!. We
choose a lattice of 303 sites and putK5180 chains of length
N510 on it. The density of occupied lattice sites is

r5
8KN

L3
50.53̄. ~1!

Previous work demonstrated that the system with this
density behaves like a polymer melt@31–33#. Between
monomers there is excluded volume interaction. Monomers
in a chain are connected by bond vectors. These bond vectors*Author to whom correspondence should be addressed.
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are not arbitrary, but generated from a set of six basic vectors
by permutations and reflections of the coordinates, denoted
by @ #. The basic vectors are

@2,0,0#,@2,1,0#,@2,1,1#,@2,2,1#,@3,0,0#,@3,1,0#. ~2!

This special choice ascertains that chains cannot cross each
other during the course of their motion with simple random-
hopping dynamics@30#. There is an important consequence
of this set of vectors. Figure 1 shows a portion of a typical
configuration of the melt. Let us look only at the two upper
monomers and the bond in between. The bond is in the state
@3,0,0#, creating a layer of empty lattice sites between the
monomers. These lattice sites cannot be occupied by another
monomer, since this requires a set of eight unoccupied sites
forming a cube. Thus they are lost as available volume. A
bond in the state@3,0,0# blocks four sites of the lattice, a
bond in the state@3,1,0# blocks two sites. A complete occu-
pation of the lattice is only possible if bonds of these two
types are avoided. Due to their presence the actually effec-
tive density of a configuration differs from Eq.~1!. Such an
effective density can be defined in the following way: In the
equilibrated melt, consisting ofK chains of lengthN, addi-
tional monomers are inserted one after the other, until the
lattice is filled. During the insertion the chains are not al-
lowed to rearrange. The maximum numberH ~‘‘holes’’ ! of
insertable monomers is determined and used to define an
effective densityreff via

reff5
KN

M
, ~3!

whereM5KN1H denotes the total number of monomers
and holes in the system. This quantity is averaged over sev-
eral independent configurations at each temperature. In this
way we model the solvent molecules as particles of the same
exclusion volume as the monomers of our chains. The effec-
tive density does not depend only on the number of chains,
but also throughH sensitively on temperature, as we will see
later. SinceH is directly connected to the accessible free

volume, the temperature dependence ofreff reflects the
change of the monomer mobility with progressive supercool-
ing and is therefore a more important quantity for the present
model thanr of Eq. ~1!.

Temperature is introduced into the system via a simple
two-level Hamiltonian. Each bond can have only two values
of energy: 0, if the bond is in state@3,0,0# ande otherwise,
i.e.,

H5 H0 if bP@3,0,0#
e otherwise. ~4!

In the following a bond in the state@3,0,0# will be called a
‘‘bond in the ground state,’’ a bond in another state will be
called ‘‘excited.’’ The degeneracy of the ground state is
g056 and that of the excited state isge5102. This Hamil-
tonian has the following consequence: Since a bond of type
@3,0,0# blocks additional lattice sites, the free volume and the
mobility of the chains is reduced. The more bonds are in this
state, the smaller the diffusion constant of the melt. This
mechanism is responsible for the glasslike freezing of the
melt forT,0.2 if relaxation is performed with simple ‘‘hop-
ping dynamics’’ @34#. For T>0.25 the diffusion coefficient
of a chain can be determined reliably and fitted by a Vogel-
Fulcher equation, yielding a rough estimate of
T0'0.1760.02 for the absolute freezing point of the model
@32–34#. In order to judge the significance of this value, it
has to be emphasized that the diffusion coefficient decreases
only by two orders of magnitude with respect to its high
temperature value in the accessible rangeT>0.25. Therefore
the value,T0'0.17, is the result of ahigh temperature ex-
trapolation, which is likely to overestimate the absolute
freezing point of the model considerably. Similar observa-
tions were also made in a recent experimental study@35#.
The valueT0'0.17 should thus not be interpreted as an ac-
curate result for the Vogel-Fulcher temperature, but rather as
an estimate for the interesting temperature region, where one
can expect the model to exhibit glassy behavior. Despite
these drawbacks in the precise location ofT0 the structural
relaxation of the studied polymer melt slows down drasti-
cally for T<0.25, which makes a proper equilibration of the
melt on all length scales of a polymer by single-monomer
dynamics unfeasible in practice. Therefore we use the
slithering-snake algorithm, which allows us to measurestatic
properties down toT'0.16 @36#.

Figure 2 shows the effective densityreff as a function of
inverse temperature. The effective densityreff is always
larger than the volume fraction of occupied lattice sitesr,
even atT5`. This is caused by the equilibrium population
of bonds in the states@3,0,0# and@3,1,0#, which prevents the
monomers from packing as closely as possible, and the
amorphous structure of the melt. When the melt is cooled
down, the Hamiltonian favors the class@3,0,0# and the effec-
tive density has to increase further. To illustrate this point
from another perspective Fig. 3 shows the ratiof of excited
bonds as a function of inverse temperature. In the athermal
case f (T5`)50.964, which is very close to
f5ge/(g01ge)5102/108'0.944, the estimate of an iso-
lated two-level system. Evidently, atT5` the influence of
the density onf is rather small. This influence becomes
larger with cooling. In the limitT→0 no bond should be

FIG. 1. A possible configuration of monomers in the melt. The
blocked sites cannot be occupied by monomers due to the self-
avoidance of the monomers. The corresponding bond is in the
ground state. The sketched jump would also violate the condition
that no site can be occupied by more than one monomer. So it is
impossible for the bond to reach the energetically favorable state.
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excited andf should vanish. We see that there is a saturation
effect at very low temperatures.f always has a value slightly
larger than 0. The reasons for this are packing constraints of
the melt. Not all bonds can reach the ground state simulta-
neously. A typical example for such a configuration can be
seen in Fig. 1. The bond at the bottom cannot enter the state
@3,0,0# without violation of the excluded volume interaction.
This frustration is responsible for the glass transition in this
system @33#. As in the original model of Gibbs and Di-
Marzio, we deal here with a lattice model, where a tempera-
ture decrease leads to an increase of~effective! density and a
local stiffening of the chains. But unlike the original model,
a strong tendency to liquid crystalline short range order is
avoided. Such short range order was found in other Monte
Carlo ~MC! studies@37# and is an undesirable side issue.

Another important input parameter for the subsequent
analysis is the coordination numberz, i.e., the number of
nearest neighbors of a monomer, which is related to the pair-

correlation function. This function was investigated forT5`
andr50.42 in Ref.@30#, and for the present thermal model
in Ref. @33#. Both studies found two distinct minima at dis-
tancesr5A6 and r5A10 ~measured in units of the lattice
constant!. These minima allow the definition ofz for the
BFM as the number of nearest neighbors withr<A6 or
r<A10. We prefer the latter choice, since it warrants that
predecessor and successor of a monomer in the same chain
are always counted as nearest neighbors. In view of a later
comparison with the Gibbs-DiMarzio theory a nearest neigh-
bor is taken to be either a monomer or a hole on the lattice.
This definition yields a value larger than that resulting from
an integration over the first peak of the pair-correlation func-
tion and also larger than that used by Mu¨ller et al. in their
studies of binary polymer mixtures@38,39#, where an
interaction range ofA6 was used and only monomers
belonging to different chains were considered, as is appro-
priate in this different context. The coordination numberz as
a function of inverse temperature can be seen in Fig. 4. For
very low temperaturesz is only slightly larger than 11. For
high temperaturesz adopts a value of about 12. Such a value
is typical of a dense packing of hard spheres and reflects the
fact that our model mimics the properties of polymers in
continuous space rather closely. With decreasing temperature
the coordination number decreases only by about 1, although
the population of the ground state increases strongly. This
shows that the stretching of the bond vectors perturbs the
average distribution of monomers and holes around a mono-
mer only slightly.

Finally, the free energy and from that the canonical en-
tropy has to be determined for the model under consider-
ation. The first step towards the free energy is the measure-
ment of the excess-chemical potential. This is done by a
modification of Widom’s particle insertion method@40–42#
and its extension to thermal systems@29#. The excess-
chemical potential in combination with the partition function
of a single chain leads to the free energy of the system
@29,41#. The partition function of the single chain is mea-
sured in a MC-simulation by an algorithm proposed by Ku-
mar, Szleifer, and Panagiotopoulos@43#, which can easily be

FIG. 2. The effective densityreff vs inverse temperatureb51/T.
In this and all further figuresT is already a reduced temperature
measured in units ofkB/e @see Eq.~4!#. The effective densityreff is
dimensionless due to the definition in the text.

FIG. 3. The ratiof of bonds in an excited state vs the inverse
temperatureb51/T.

FIG. 4. The coordination numberz vs the inverse temperature
b51/T.
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applied to the BFM@29#. With the help of the free energy the
additional measurement of the internal energy finally yields
the temperature and density dependence of the entropy.
Since the method and the raw data have already been pre-
sented in Ref.@29#, we restrict ourselves in the following to
the physical interpretation of the results and focus on the
comparison with various theoretical predictions for the en-
tropy.

III. APPROXIMATIONS FOR THE ENTROPY

The theoretical approximations we want to discuss differ
in the choice of the thermodynamic ensemble they are done
in. The first one, the pressure-trimer approximation, is done
in the canonical ensemble, same as the simulation.

The various more elaborate theoretical approaches by
Flory, Milchev, and Gibbs-DiMarzio are calculations in the
microcanonical ensemble. The entropy density as calculated
in this ensemble can differ from the simulation value by an
amount of the orderO(R21/2! if there areR degrees of free-
dom in the system. SinceR'23103 we can expect devia-
tions of 2 . . . 3% which is much less than any effect that we
will discuss.

A. Pressure-trimer approximation

The equilibrium properties of the studied polymer model
result from the competition between the intrachain energy
and the density of the melt. Approximately, the effects of the
density can be taken into account by balancing the volume
requirements of subunits, consisting of three successive
monomers along the chain, with the pressure that is exerted
by the melt at the given density@44#. Since such a ‘‘pressure-
trimer approximation’’~PT-approximation! yields rather ac-
curate estimates for the chain length and temperature depen-
dence of various quantities that probe different length scales
of the polymer ~bond length, radius of gyration, etc.!, it
seems worthwhile to apply this simple approach also to de-
termine the entropy.

The starting point of the PT-approximation is the calcula-
tion of the exclusion volumev( i , j ) for all trimers (i , j )
which can be constructed from the set of allowed bond vec-
tors @see Eq.~2!#. The exclusion volume is defined as the
volume which is blocked for other monomers by the ex-
cluded volume interaction~i.e., four sites for a bond in the
ground state; see Fig. 1!. If a trimer changes its configura-
tion, the exclusion volume will fluctuate. Such a fluctuation
can only occur if the arrangement of the adjacent monomers
provides the required space. Hence the local monomer den-
sity limits the number of available configurations and
thereby thedensity of statesof a trimer in the canonical
ensemble. The simplest way of representing the effect of the
surrounding monomers is to regard the changes in the exclu-
sion volume as if they weremacroscopic volume fluctua-
tions. The probability of a macroscopic fluctuation of size
DV in a system at pressurep is proportional to
exp[2bpDV]. Accordingly, we choose the density of trimer
states as exp[2p* v( i , j )], wherep* is the ~osmotic! pres-
sure of theathermalBFM, whose chain length and density
dependence is known analytically@45#. Therefore the~ca-
nonical! partition function of a trimer in this approximation
reads@44#

ZPT~b,r!5(
i j

exp$2p* ~r!v~ i , j !2b@H~bi !1H~bj !#%,

~5!

where the sum runs over all bond pairs compatible with the
excluded volume constraints. With the help of Eq.~5! the
PT-approximation for the entropy can be written down im-
mediately as

SPT~b!5b@EPT~b!2FPT~b!#

5b^H~bi !1H~bj !&1 ln ZPT~b!. ~6!

Since a chain with~N21! bonds yields~N21!/2 trimers, the
entropy per lattice site is given bysPT5K(N21)SPT/2L

3.
The result of this calculation is compared with the simulation
data in Fig. 5. One can see that the PT-approximation de-
scribes the temperature dependence of the entropy almost
perfectly fromT5` down toT;0.18 ~b'5.5̄!. This shows
that the impact of the complicated many-body effects which
determine the configurational statistics of the melt are
grasped, to a good approximation, by the influence of the
pressure on the bonds in the whole temperature range except
for very low temperatures~i.e., for T,0.18!. Since the tem-
peratures belowT50.18 belong to the region close to the
glass transition of the studied model@34#, the deviation be-
tween the PT-approximation and the simulation data sug-
gests to test whether the Gibbs-DiMarzio theory or related
theories can provide a better description. These different ap-
proximations for the entropy are exposed and compared with
the simulated entropy in the subsequent sections.

B. Flory’s approach

Our exposition of the following three theoretical approxi-
mations for the partition function of a dense polymer melt
will follow closely a discussion by Wittmann@46#, who ana-
lyzed in detail these theoretical approaches and their interre-
lation.

FIG. 5. Comparison of the temperature dependence of entropy
per lattice sites with the PT-approximation@solid line; see Eq.~6!#.
s is measured in units ofkB .
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The purpose of Flory‘s original work@47–49# is the de-
scription of semiflexible lattice polymers in solution. In this
model every monomer occupies one lattice site. Flory fo-
cused on the temperature driven transition from flexible to
collinear chains. A collinear bond angle is said to have en-
ergy 0, a flexed one energy«. The behavior of the melt is
characterized by a single temperature dependent parameter,
the flexibility f F , which is defined as the probability that two
successive bonds in a chain are not collinear

f F5
~z22!e2b«

11~z22!e2b« . ~7!

By construction this parameter describes the transition
from flexible chains at high temperature
[ f F'(z22)/(z21)] to collinear chains forT→0 ~f F→0!.
This definition separates the possible types of trimers into
two classes and introduces a two-level system: trimers with
collinear~ground state! and with flexed bonds~excited state!.

A chain withN monomers has~N21! bonds and~N22!
bond angles which can have an energy. This definition is
only reasonable on the simple cubic lattice. On the general-
ized tetrahedral lattice all trimers are equivalent and thus one
arbitrarily chosen trimer has to be distinguished. But a
simple symmetry operation turns this trimer into another,
which should have the same energy. So no energy can be
associated with the first bond angle in this case and only
~N23! bond angles can contribute to the energy. That leads
to different factors in the two formulations of the theory, but
otherwise does not affect the results. Since we work on a
simple cubic lattice, we use Flory’s result with~N22! bond
angles for the~microcanonical! partition function of a system
of K flexible polymers with ‘‘energy’’f F @48#, i.e.,

ṼF~ f F ,K,N,M ,z!5F 1

K!2K
M !

~M2KN!! S zM D K
3S z21

M D K~N22!GF S K~N22!

f FK~N22! D
3S 1

z21D ~12 f F!K~N22!

3S z22

z21D
f FK~N22!G . ~8!

In this equation the first factor is a mean-field approxima-
tion for K SAW-polymers ~self-avoiding walk-polymers!,
each consisting ofN monomers, on a lattice withM sites
@46,47,50#. The second factor is a binomial distribution,
yielding the probability thatf FK(N22) bond angles out of a
total of K(N22) are flexed.

f F has been defined as the probability of a flexed bond,
modeling the transition to the nematic phase. Our model
shows no nematic transition, but there is a parallel to the
original work of Flory: Both models contain a two-level
Hamiltonian. Since in our model the energy is rather con-
nected with the bonds than with the bond angles,~N22! has
to be replaced by~N21! in Eq. ~8!. We also change the
notation fromf F to f to emphasize that in our workf is no
measure of the flexibility any longer. Assuming that for a

nonreversal random walk~NRRW! always one of the~z21!
bonds has energy 0 instead ofe, it is

VF~ f ,K,N,M ,z!5F 1

K!2K
M !

~M2KN!! S zM D KS z21

M D K~N22!G
3F S K~N21!

fK~N21! D S 1

z21D ~12 f !K~N21!

3S z22

z21D
f k~N21!G . ~9!

Hence the microcanonical entropy is given by

sF~ f ,K,N,M ,z!5
1

V
SF~ f ,K,N,M ,z!

5
1

V
ln VF~ f ,K,N,M ,z!, ~10!

whereV is the volume of the system, which is given by
V58(KN1H) ~there areKN monomers andH holes, each
occupying eight sites of the lattice!. SinceH depends on
temperature,V has to be calculated for each temperature
separately to ensure that the theory describes a melt at the
same temperature and effective density as the simulation.

C. Milchev’s criticism

Flory’s result was criticized by Gujrati and Goldstein
@51,52# and Milchev@53#. Here we follow Wittmann’s expo-
sition of Milchev’s approach@46#. The criticism is that the
number of free lattice sites accessible to a chain is notM but
M2( j21)M /K, if there are already~j21! chains on the
lattice, since each chain consumes an average volumeM /K.
According to Milchev and Wittmann the first factor in Eq.
~9! has to be modified

z

M
→

z

@12~ j21!/K#M
5

K

K2~ j21!

z

M
, ~11!

z21

M
→

z21

@12~ j21!/K#M
5

K

K2~ j21!

z21

M
, ~12!

and thus

S z

M D KS z21

M D K~N22!

→S )
j51

K
K

K2~ j21!D N21

3S z

M D KS z21

M D K~N22!

~13!

5SKK

K! D
N21S zM D KS z21

M D K~N22!

.

~14!

With these substitutions a modified partition function re-
sults, which differs from Eq.~9! only by a constant prefactor

VM~ f ,K,N,M ,z!5SKK

K! D
N21

VF~ f ,K,N,M ,z!. ~15!
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For large numbers likeK Stirling’s formula can be applied,
i.e.,

lnSKK

K! D
N21

5~N21!K, ~16!

yielding for the entropy

sM~ f ,K,N,M ,z!5
1

V
lnVM~ f ,K,N,M ,z!

5sF~ f ,K,N,M ,z!1
K~N21!

V
. ~17!

The entropiessM andsF differ only by a positive additive
constant and sosM.sF . The discussion of Ref.@46# demon-
strated that in the limit of the totally occupied lattice,N→`
andT→0 sM vanishes so thatsF,0. This negative entropy
was interpreted as evidence for a thermodynamic phase tran-
sition which occurs at a nonzero temperatureT2, where
sF50. On the other hand, in Milchev’s treatment such a
transition is clearly absent.

D. Gibbs-DiMarzio theory of a compressible polymer melt

The Gibbs-DiMarzio theory describes a compressible
polymer melt@8–11#. With the help of Stirling’s formula the
corresponding partition function may be written as@46#

VGDM~ f ,K,N,H,z!5@~KN1H !z/2#K~N21!

3
@~KÑ1H !z/2#!

@~KN1H !z/2#!

3VF~ f ,K,N,M ,z!, ~18!

where the number of holesH ~and thus the volumeM5KN
1H! is treated as a variable parameter, andÑz is the number
of nearest neighbors of a rodlike polymer. The parameterÑ
is defined via@46#

Ñ52
z21

z
1~N22!

z22

z
. ~19!

Thus the entropy differs from the one calculated by Flory
only by an additional term, giving an offset. However, in this
case the offset depends on temperature.

Wittmann has shown@46# that the entropy of Gibbs-
DiMarzio is given by

SGDM
KN1H

5
SM

KN1H
1
z

2 SKÑ1H

KN1H D lnSKÑ1H

KN1H D . ~20!

SinceÑ,N, ln[(KÑ1H)/(KN1H)] becomes negative and
we find SGDM,SM . In the same limit, whereSM vanishes,
SGDM would thus become negative. The temperature where
SGDM becomes zero is then identified with the temperature of
the underlying thermodynamic glass transition, arguing that
SGDM stays 0 is the glassy phase.

E. Results

In this section the results of the simulation are compared
with the formulas by Flory@Eq. ~9!#, Milchev @Eq. ~15!#, and
Gibbs-DiMarzio@Eq. ~18!#. For this comparison two strate-
gies are followed: On the one hand, all input parameters, i.e.,
z, f , andH, are taken from the simulation, and on the other
hand, one of them, i.e.,z, is used as a free fit parameter.

Figure 6 depicts the results for the case, where all param-
eter were determined in the simulation~i.e., no parameter
adjustment was done.!. Flory’s and Gibbs-DiMarzio’s for-
mulas exhibit a quite similar behavior. Both curves show that
the entropy strictly decreases when the system is cooled
down and becomes zero forT'0.18 ~Flory! and T'0.17
~Gibbs-DiMarzio!. These temperatures coincide within the
error bars with the above mentioned estimate for the Vogel-
Fulcher-temperatureT0 of the system. Unfortunately it can-
not be decided if the entropy continues to fall for lower tem-
peratures or adopts a constant value. It should be remarked
that nearly the same results are obtained ifH is not measured
for each temperature, but always set to its athermal value.
The effect of a variation ofH on the entropy is therefore
rather weak for the present model. However, this may be
different in other systems. Therefore we useH5H(T) in the
following discussion to use a consistent interpretation of the
theoretical parameters.

If the predictions of these theories are compared with the
results of the simulation, some deviations are obvious. The
entropy is underestimated by the theories. For high tempera-
tures this is only a simple factor of about 1.3, but in the
temperature range of the glass transition the qualitative be-
havior changes. The entropy from the simulation is still dis-
tinctly nonzero and decreases only by a factor of 3 when the
melt is cooled fromT5` to Tg . Thus there is no evidence
for a vanishing entropy.

Milchev’s formula provides a somewhat better description
of the simulation data. The theory predicts a strictly positive
entropy over the whole range of temperatures. As the simu-
lation data Milchev’s entropy decreases by a factor of 3 with
temperature, but a quantitative agreement cannot be ob-

FIG. 6. The entropy per lattice sites vs the inverse temperature
b51/T. The results of the simulation are compared with the original
formulas~see text for details!. s is measured in units ofkB .
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tained. Equation~17! overestimates the entropy by about
10. . . 20%. The largest discrepancies occur at intermediate
temperatures. However, one has to take into account that the
theory treats the many-body interactions of a dense melt in a
rather approximate fashion so that a perfect quantitative co-
incidence of simulation data and theoretical prediction
should not be expected. A deviation of 10–20 % is therefore
a rather satisfying result.

Based on this result one could try to improve the quanti-
tative agreement between Milchev’s theory and the simula-
tion data by treating the coordination number as a free, tem-
perature independent parameter, whereasf andH are taken
from the simulation. Figure 7 shows for a few reasonable
choices for the coordination number that there is no value of
z which describes the data over the whole temperature range.
In the low temperature region the curves for allz values
coincide and always overestimate the simulated entropy. If
the temperature increases, the curves start to splay out, re-
maining either entirely above the simulation data, coinciding
with them at high temperatures, or crossing them at interme-
diate temperatures, depending on the choice ofz. Therefore
Eq. ~17! with a constantz value worsens the qualitative
agreement between theory and simulation and is thus not a
competitive alternative to the description with temperature
dependent coordination number.

F. Adam-Gibbs relation

In the Adam-Gibbs theory the entropy determines the dif-
fusion constant of the melt by the relation@3,54#

D~T!5D~`!expS 2
A

TSD . ~21!

D~`! is easily obtained fromg3 ~defined as the mean-square
displacement of the center of mass of the chains! via

D~`!5 lim
t→`

g3
6t

'5.231024. ~22!

A is a fit parameter. The theoretical predictions are compared
with the above mentioned results for the diffusion coefficient
@34# and should be determined via Eq.~21! for T>0.25.

Figure 8 compares the direct measurement ofD with
theoretical predictions with two different values ofA.
Though the shape of the theoretical and the measured curve
is similar, the quantitative agreement is rather poor. We have
chosen two typical values forA. Theory and simulation al-
ways agree at one temperature, while the theory overratesD
for lower and underrates it for higher temperatures. To obtain
coincidence between the Adam-Gibbs relation and the simu-
lation data at high temperatures,A has to be set to 0.0581,
giving the upper curve. To achieve the same at lower tem-
peratures,A has to be set to 0.143, giving the lower curve.
These two curves define the range, in whichA can be varied.
It is not possible to choose a value ofA that predicts the
diffusion constant correctly over a whole temperature range.
However, this test of the Adam-Gibbs theory is only prelimi-
nary, since there are only two data points for the entropy in
the temperature interval, where the diffusion coefficient de-
creases strongly~i.e., forT<0.6! and where we would expect
Eq. ~21! to hold.

IV. DISCUSSION

We have measured the entropy of the polymer melt in a
computer simulation. Since we have used a fast ‘‘slithering-
snake’’ algorithm@36#, we are sure that the data do not con-
tain nonequilibrium effects. This set of data allows a test of
theoretical predictions for the entropy even in the tempera-
ture range close to the glass transition. The strictly positive
entropy over the whole range of temperatures is a first indi-
cation that the theories of Flory and Gibbs-DiMarzio cannot
predict the entropy accurately. The usual interpretation, that
the experimentally observed glass transition signifies the
vanishing of the configurational entropy at a finite tempera-
ture in the hypothetical limit of quasistatic cooling, is there-
fore questionable.

FIG. 7. Milchev’s entropy per lattice sitesM vs the inverse
temperatureb51/T for different coordination numbersz which are
treated as free parameters.s is measured in units ofkB .

FIG. 8. The diffusion constantD vs the inverse temperature
b51/T. The filled circles are a direct measurement~from @34#!,
‘‘ L’’ is the Adam-Gibbs relation withA50.0581, and ‘‘h’’ with
A50.143 ~see text for details!. D is measured in units ofa2 per
Monte Carlo step wherea is the lattice constant.
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Nevertheless there are important insights in the transition
to the glassy phase. We can conclude that the entropy is
described over the whole range of temperatures fromT5` to
T0 by oneformula. This even holds for the temperature range
where the theory predicts a phase transition and demands
that the entropy is set to 0 instead of the value predicted by
the formula. In contrast to that the entropy is alwaysstrictly
positive, even below the temperature where the glass transi-
tion occurs. The entropy catastrophe predicted by Flory for
the limit of the low temperature and a fully occupied lattice
is removed by Milchev’s extension. It is interesting to note
that the entropy catastrophe, produced by the formulas of
Flory and Gibbs-DiMarzio, occurs at a temperature that co-
incides with the Vogel-Fulcher temperature of our system
within the estimated errors.

The basic difference of the calculations of Flory, Gibbs-
DiMarzio, and Milchev lies in the approximation of the
translational part of the partition function. This leads to the
underestimation of the entropy already in the high tempera-
ture limit. The intramolecular part with its dependence of the

energy parameters is the same in all three theories leading to
the same shape of the predicted curves as a function of tem-
perature. Since the shape of the entropy vs temperature curve
is correctly reproduced, predictions for experimental quanti-
ties like the specific heat will still be in good agreement with
the experimental findings. Thus the theories are useful to
analyze experiments but the intimate connection of the ex-
perimental glass transition atTg and a thermodynamic phase
transition at 0,T2,Tg is not stringent.
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Hochschulrechenzentrum Kaiserslautern~RHRK! for a gen-
erous grant of computer time on the CRAY-YMP. This work
was supported by the Deutsche Forschungsgemeinschaft
~SFB 262!.

@1# Dynamics of Disordered Materials II, edited by A. J. Dianoux,
W. Petry, and D. Richter~North-Holland, Amsterdam, 1993!.

@2# 2nd International Discussion Meeting on Relaxations in Com-
plex Systems, edited by K. L. Ngai@J. Non-Cryst. Solids172–
174 ~1994!#.
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